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As a global medical problem, breast cancer is the most commonly diagnosed can-
cer and the leading cause of cancer death among females (1). The development of 
imaging technologies have made great contribution to breast cancer diagnosis (2). 

Ultrasonography (US) is a valuable supplemental scanning modality for women with dense 
breasts (3–5). Radiologists make final diagnosis based on the morphological characteris-
tics of breast masses according to the interpretation of Breast Imaging Reporting and Data 
System (BI-RADS) (6). For US BI-RADS classification, interobserver agreement ranging from 
fair to substantial has been reported among radiologists with different experience levels 
(7). Therefore, the subjectivity and empirical dependence aroused controversy towards its 
true diagnostic efficacy. Many studies have shown that the combined use of US-mode and 
ultrasound elastography has greater diagnostic efficacy than US-mode alone (8–11). How-
ever, until now, there was no consistent standard value of shear-wave elastography (SWE) 
in differentiation between malignant and benign breast masses which might result from 
the numerous reference parameters including maximum (Emax) and standard deviation 
(SD) (12). Both US-mode and SWE provide us with abundant uncertain information, which 
inexperienced radiologists cannot extract from, interpret, and utilize accurately. Therefore, 

PURPOSE 
We aimed to compare the diagnostic performance and interobserver variability in breast tu-
mor classification with or without the aid of an innovative dual-mode artificial intelligence 
(AI) architecture, which can automatically integrate information from ultrasonography (US) 
and shear-wave elastography (SWE).

METHODS
Diagnostic performance assessment was performed with a test subset, containing 599 im-
ages (from September 2018 to February 2019) from 91 patients including 64 benign and 27 
malignant breast tumors. Six radiologists (three inexperienced, three experienced) were as-
signed to read images independently (independent diagnosis) and then make a secondary 
diagnosis with the knowledge of AI results. Sensitivity, specificity, accuracy, receiver-operator 
characteristics (ROC) curve analysis and Cohen's κ statistics were calculated.

RESULTS
In the inexperienced radiologists’ group, the average area under the ROC curve (AUC) for di-
agnostic performance increased from 0.722 to 0.765 (p = 0.050) with secondary diagnosis us-
ing US-mode and from 0.794 to 0.834 (p = 0.019) with secondary diagnosis using dual-mode 
compared with independent diagnosis. In the experienced radiologists’ group, the average 
AUC for diagnostic performance was significantly higher with AI system using the US-mode 
(0.812 vs. 0.833, p = 0.039), but not for dual-mode (0.858 vs. 0.866, p = 0.458). Using the US-
mode, interobserver agreement among all radiologists improved from fair to moderate (p = 
0.003). Using the dual-mode, substantial agreement was seen among the experienced radiol-
ogists (0.65 to 0.74, p = 0.017) and all radiologists (0.62 to 0.73, p = 0.001).

CONCLUSION
AI assistance provides a more pronounced improvement in diagnostic performance for the 
inexperienced radiologists; meanwhile, the experienced radiologists benefit more from AI in 
reducing interobserver variability. 
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the standardization and precision diagnosis 
of US and SWE are the challenges and re-
search hotspots of ultrasound technology 
currently.

The field of biomedical image analysis 
benefited substantially from rapid devel-
opments in artificial intelligence (AI) tech-
niques. Previous studies on traditional 
computer-aided diagnosis (CAD) for breast 
cancer have shown that the segmentation 
of US and SWE images and integration of 
extracted features achieved better classi-
fication performance than their individual 
uses (13–15). With the CAD system, the 
average diagnostic performance of radiolo-
gists was improved or at least comparable 
to the independent diagnosis based on 
breast US images (16, 17). An observational 
study conducted by Van Zelst et al. (18) con-
cluded that CAD software for automated 
breast US may speed up the screening time 
without compromising the screening per-
formance of radiologists. As a revolution-
ary advance, the deep learning algorithm 
(convolution neural network for image 
processing) has a strong feature extraction 
ability, which can extract higher level fea-
tures rather than superficial features and 
provide more possibilities for medical im-
age processing. Recently few studies have 
shown the great potential of deep learning 
framework in ultrasound image processing 
of breast lesions (19–22). 

However, the abovementioned obser-
vational studies were focused only on a 
single mode of ultrasonic breast images. 
Throughout these papers, there was no 
deep learning model which is capable of 
integrating US with SWE images of breast le-
sions rationally. In clinical practice, compre-
hensive analysis with dual-mode ultrasound 
is of great importance for breast lesions. To 
meet the clinical needs, we designed a nov-
el module named “shared latent subspace 
learning,” which captures the inter-mode 
relationship between SWE-mode and US-

mode via a shared-parameter Dense Block 
that is optimized under adversarial loss 
and orthogonality constraint. Similar to the 
normal working mode of radiologists and 
just like the workflow of CAD software (23), 
radiologists will combine the diagnostic 
results given by software and achieve the 
secondary diagnostic results after compre-
hensive consideration. Therefore, we con-
ducted a dual-mode reader study where we 
investigated the benefits of incorporating 
an innovative AI architecture. We compared 
the diagnostic performance and interob-
server agreement of different radiologists in 
breast mass classification through indepen-
dent diagnosis and secondary diagnosis.

Methods
Institutional Review Board approval was 

obtained at our hospital (No. 2019KY055). 
Written informed consent was waived by 
the Institutional Review Board.

From September 2018 to February 2019, 
2008 images of 395 benign lesions and 
959 images of 130 malignant lesions (size, 
17.6±10.5 mm; range, 4.2–85 mm) from 525 
women (mean age, 47.2±15.4 years; age 
range, 17–91 years) were collected as the 
whole dataset used in this study. All case 
results were confirmed by pathology, with 
complete information of US and SWE of im-
aging.

The super linear probe L-15-4 of ultra-
sound device Aixplorer (Super Imagine) was 
used for imaging data collection. After full 
examination of the breast lesions in both of 
transverse and longitudinal sections, both 
US and SWE images were saved and then 
used for further analysis. A target detection 
labeling tool, LabelImg, was used to crop 
the region of interest (ROI) from the origi-
nal images according to the labeling results 
from radiologists. The labeling results were 
a set of rectangular boxes to show the po-
tential nodal region, manually delineated 
and confirmed by two radiologists (with 
over 5 years of experience in breast ultra-
sound interpretation). The overall dataset 
was split into 5 parts, named as Subset 0, 1, 
2, 3 and 4. Subsets of 0 to 3 were used for 
training and validation, while Subset 4 was 
the holdout test set. All hyperparameters 
are validated via 4-fold cross validation on 
subsets of 0 to 3.

Dual-mode artificial intelligence
In order to improve the diagnostic per-

formance of traditional breast cancer CAD 

system, we designed a dual-mode AI sys-
tem which integrates complementary infor-
mation from US-mode and SWE-mode and 
thus enhances the feature representations 
of each mode image (Fig. 1). The system 
uses deep learning convolutional neural 
networks (CNN) to extract mode-specific 
feature representations of input images 
(Fig. 1a). Specifically, we constructed two 
DenseNets with same network structure 
but different mode parameters to extract 
mode-specific features, since DenseNet, as 
the backbone of our system, has indicated 
convincing classification accuracy in image 
recognition tasks.

The architecture of DenseNet utilized in 
the proposed AI system is illustrated in Fig. 
1b. The whole DenseNet consists of four 
stacked blocks (i.e., DenseBlock), each of 
which extracts different levels of features 
from the input image, from shallow texture 
features to deep semantic features. The fea-
tures are calculated through a series of con-
volution operations which are represented 
as four internal nodes contained in each 
DenseBlock. The most remarkable feature 
of DenseNet is that any two nodes in each 
DenseBlock are directly connected, which 
indicates that the shallow features can be 
reused in the subsequent feature calcula-
tion process, and thereby enhances the ro-
bustness of feature representation. There-
fore, we choose to leveraging the power of 
dense connectivity and utilize DenseNet as 
the backbone network of the image feature 
extraction module in the proposed AI sys-
tem.

Moreover, the last DenseBlock (i.e., 
DenseBlock 4) in either DenseNet shares the 
same set of parameters, being optimized to 
learn a shared latent subspace and extract 
the shared features from both modes. The 
main purpose of learning a shared latent 
subspace is to align features of different ul-
trasound modalities in a higher dimension-
al spatial embedding, and thereby learn the 
joint distribution between these two modal 
features. This shared latent subspace is con-
structed to learn the cross-modal relation-
ship, where the complementary informa-
tion from two modalities can be expressed 
by modeling the joint distribution density 
function of the data. Specifically, the main 
technical route to learn such a subspace is 
to decouple features into mode-specific fea-
tures and shared features between different 
ultrasound modalities, shown as two inde-
pendent branches of each mode in Fig. 1a. 

Main points

•	 Dual-mode AI architecture has great poten-
tial in clinical dual-mode task of ultrasound 
techniques in assisting the classification of 
breast masses.

•	 The inexperienced radiologists benefit more 
from AI results in terms of diagnostic perfor-
mance improvement.

•	 The experienced radiologists benefit more 
from AI in reducing interobserver variability.



Through optimizing the adversarial loss Ladv, 
difference loss Ldiff and cross-entropy loss 
Lcls,m, where adversarial loss forces “Dense-
Block 4” or the so called “mode-shared en-
coder” to extract only the mode-invariant 
features, difference loss prevents redundant 
mode-invariant features from being pres-
ent in both latent mode-shared subspace 
and latent mode-specific subspace, and 
cross-entropy loss measures the similarity 
between the predicted results and the ac-
tual results, we successfully learn a shared 
latent subspace of two ultrasound modal-
ities, capturing their potential inter-mode 
relationship. Another important motivation 
to decouple mode-specific features and 
shared features is to depress feature redun-
dancy problems that may reduce model’s 
classification accuracy. Finally, it is natural 
and effective to fuse these two decoupled 
feature vectors by concatenation before be-
ing fed into feature classifiers.

Furthermore, a triple-task learning 
framework makes our system capable of 

generating three benign-malignant clas-
sification results based on different ex-
tracted features, including enhanced US 
image features (fE-US) which is composed 
of US-specific features and US-shared 
features, enhanced SWE image features 
(fE-SWE), which is composed of SWE-specific 
features and SWE-shared features and the 
fused US-SWE dual-mode features using 
concatenation of fE-US and fE-SWE, together 
with two categorical probabilities to indi-
cate the effectiveness of shared features 
(fS–US, fS–SWE) (Fig 1c).

The overall architecture of our proposed 
system is illustrated in Fig 1. The system is 
flexible to deal with both dual-mode data 
and single-mode data, while the existing 
breast cancer CAD systems are limited to 
either dual-mode inputs or single-mode 
inputs. Moreover, the design of feature con-
catenation enables our system to provide 
reliable classification results in cases when 
one single mode information is missing or 
obscure.

Study design and data analysis
Six radiologists who had performed more 

than 1000 breast US and 150 breast SWE 
examinations in the last 1-2 years were in-
volved in this reader study. Because 5 years 
of experience is usually required before 
promotion to attending doctor, we divid-
ed them into inexperienced group (reader 
1, reader 2, and reader 3) and experienced 
group (reader 4, reader 5, and reader 6). 
General US experience of six radiologists 
was 2, 4, 5, 9, 11 and 15 years. For inexpe-
rienced and experienced readers, numbers 
of breast US imaging studies (performing 
and interpreting) they evaluated per year 
was more than 1000 and 2000, respectively. 

The readers first read ultrasound images 
independently; then, after an interval of 7 
days, they did a secondary diagnosis with 
the aid of AI (secondary-diagnosis mode). 
At first, all readers were trained by reading 
20 series of breast images (including US-
mode and SWE-mode) in which 10 were 
read just by independent-diagnosis mode, 
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Figure 1, a–c. The architecture of the proposed system (a–c). The three parts show the three kinds of extracted feature sets that were used for 
classification outputs (a), the illustration of the framework in DenseNet (b), and the illustration of each loss function used during training (c).
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and 10 through secondary-diagnosis mode. 
In secondary-diagnosis mode, radiologists 
read breast images without AI first, then 
combined the AI results to make the final 
diagnosis. In the following observer study, 
first, all readers were asked to read data 
from our internal test dataset (Subset 4) in-
dependently, and then, all readers made the 
other diagnosis after reading AI interpreta-
tions. The image numbers and sequences of 
the same patient were presented in random 
ways to different readers. Based on the BI-
RADS category and reference threshold of 
SWE value set by instrument manufacture, 
readers classified breast lesions into catego-
ries ranging from 3 to 5: first, Emax ≥60 kPa 
was set as cutoff value; second, BI-RADS 4a 
mass downgraded to BI-RADS 3 combined 
with Emax ≤40  kPa, BI-RADS 3 mass up-
graded to BI-RADS 4a combined with Emax 
≥50  kPa. Breast lesions of category 3 were 
regarded as benign, and those of categories 
4a, 4b, 4c and 5 were regarded as malignant. 
In total, we got four diagnosis results for 
each breast lesion manually (2 ultrasound 
modes × 2 reading modes). For AI system, 
the diagnostic result of multiple pictures of 
one mass was given by the definition of ma-
jority rule. Finally, all lesions were dichoto-
mized into 0 for benign and 1 for malignant 
for diagnostic performance assessment. The 
pathological diagnosis after surgery or nee-
dle biopsy was used as reference standard.

Statistical power estimation
In the test data set, there were 186 positive 

and 413 negative samples. For real-world ra-
diologists, on US-mode, assuming the AUC 
of independent-diagnosis mode to be 0.70, 
the AUC of secondary-diagnosis mode to 
be 0.75, the statistical power was 0.61. On 
dual-mode, assuming the AUC of indepen-
dent-diagnosis mode to be 0.80, the AUC of 
secondary-diagnosis mode to be 0.85, the 
statistical power was 0.71. Alpha was set to 
be 0.05 in both cases, power estimation were 
calculated with PASS 11.

Statistical analysis
The descriptive data of mass size and pa-

tient age were shown as mean ± standard 
deviation. The diagnosis performance of 
independent-diagnosis mode and second-
ary-diagnosis mode of all readers was as-
sessed according to four measures: sensitiv-
ity, specificity, accuracy and the area under 
the ROC curve. With the paired diagnostic 
results (without AI and with AI), the two 

diagnostic modes were evaluated on the 
same set of patients, therefore, we used Mc-
Nemar’s test for dependent proportions. The 
McNemar test was applied on sensitivity, 
specificity, accuracy and the z-test was ap-
plied on AUC to measure the performance 
differences. ROC curve for the inexperi-
enced and experienced radiologists were 
produced by group averaging (mean with 
standard error), respectively. The AUC values 
of all the six radiologists with or without AI 
were given as median (min–max). Inter-ob-
server variability was assessed with the 
Weighted Cohen’s kappa (κ) statistics: slight 
agreement (≤0.2), fair agreement (0.21–
0.40), moderate agreement (0.41–0.60), sub-
stantial agreement (0.61–0.80), or almost 
perfect agreement (0.81–1.00). We assessed 
the weighted κ values between readers 
at two different diagnostic mode. For the 
six readers, a total of 15 pairs of observers 
yielded 15 κ values. Observer agreement 
analysis was performed for three observer 
groups: between the inexperienced and ex-
perienced radiologists (9 pairs of observers 
yielded 9 κ values), within inexperienced 
radiologists (3 pairs of observers yielded 3 k 
values) and within experienced radiologists 
(3 pairs of observers yielded 3 κ values). Av-
erage κ values of each group without and 
with AI were calculated. Statistical analyses 
other than Az comparison were computed 
using the SPSS software (version 20.0), while 
Medcalc software (Version 16.2) was em-
ployed to make Az comparison. p < 0.05 was 
regarded as statistically significant.

Results
As shown in Fig. 2, the classification re-

sults based on dual-mode image pairs can 

suppress the classification errors of US im-
ages (Fig. 2a, 2b) or SWE images (Fig. 2c, 2d) 
via fully using the inter-mode knowledge. 
Due to medical instrument operation con-
ditions, some information is often missing 
on SWE images and sometimes the missing 
information will occupy the main part of 
the image (As the black part shown in Fig. 
2c, 2d), which makes the diagnosis unreli-
able. In such a case, US images can other-
wise provide a reliable basis for diagnosis. 
In a few cases, the classification results 
based on two modes may provide misdiag-
nosis even if both single-mode images are 
correctly classified by US-only image and 
SWE-only image classifiers (Fig. 2e, 2f ). The 
AUCs of each radiologist, each reader group 
and all the readers with and without AI sys-
tem are shown in Tables 1–4.

The experienced radiologist group showed 
higher AUC than the inexperienced radiolo-
gist group on both US-mode (0.812 vs. 0.722, 
p  =  0.008) and dual-mode (0.858 vs. 0.794, 
p  =  0.011) at independent-diagnosis mode. 
AI system showed comparable AUC to the 
inexperienced radiologist group (0.781 vs. 
0.722, p  =  0.116) and experienced radiolo-
gist group (0.781 vs. 0.812, p  =  0.264) and 
all the readers (0.793 vs. 0.781, p = 0.566) on 
US-mode breast lesion image analysis. On 
dual-mode, AI system obtained higher AUC 
than the inexperienced radiologist group 
(0.892 vs. 0.794, p < 0.001) and was equivalent 
to the experienced radiologist group (0.892 
vs. 0.858, p  =  0.062). On average, AI system 
showed higher AUC than all the radiologists 
on dual-mode image analysis (0.892 vs. 0.835, 
p < 0.001). Results are shown in Tables 1 and 2.

The experienced radiologist group 
showed higher AUC than the inexperienced 

Table 1. Comparison of AUCs between different reading groups and AI 

US-mode Dual-mode

Independent-D Secondary-D Independent-D Secondary-D

AI vs. Inexperienced 0.781 vs. 0.722 0.781 vs. 0.765 0.892 vs. 0.794 0.892 vs. 0.834

p 0.116 0.641 <0.001 0.007

AI vs. Experienced 0.781 vs. 0.812 0.781 vs. 0.833 0.892 vs. 0.858 0.892 vs. 0.866

p 0.264 0.047 0.062 0.081

AI vs. All readers 0.781 vs. 0.793 0.781 vs. 0.812 0.892 vs. 0.835 0.892 vs. 0.852

p 0.566 0.409 <0.001 0.001

Inexperienced vs. 
Experienced

0.722 vs. 0.812 0.765 vs. 0.833 0.794 vs. 0.858 0.834 vs. 0.866

p 0.008 0.025 0.011 0.123

AI, artificial intelligence; Independent-D, independent-diagnosis; Secondary-D: secondary-diagnosis; AUC, area 
under the receiver-operator characteristics curve.



radiologist group on US-mode (0.833 vs. 
0.765, p = 0.025) and no statistical difference 
on dual-mode (0.866 vs. 0.834, p = 0.123) at 
secondary-diagnosis mode (Table 2). With 
the aid of AI system, the average AUC for 
the inexperienced radiologists increased 
from 0.722 to 0.765 (p  =  0.050) while the 
one for the experienced radiologist group 

increased from 0.812 to 0.833 (p  =  0.039) 
on US-mode. Finally, the average AUC of 
all the radiologists showed a significant in-
crease from 0.793 to 0.812 with AI system 
(p < 0.001) on US-mode. On dual-mode, the 
average AUC of the inexperienced radiolo-
gists was significantly improved by AI sys-
tem at secondary-diagnosis mode (0.794 

vs. 0.834, p = 0.019), but not for the expe-
rienced radiologist group (0.858 vs. 0.866, 
p = 0.458) and all the radiologists (0.835 vs. 
0.852, p = 0.060). 

The accuracy, sensitivity and specificity of 
AI system of US-mode and dual-mode were 
85.9%, 59.3%, 96.9% and 92.4%, 81.5%, 
96.9%, respectively (Table 3). The sensitivi-
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Table 2. Comparison of AUCs of different reading modes

US-mode Dual-mode

AUC (mean±SE) AUC (mean±SE)

Independent-D Secondary-D p Independent-D Secondary-D p

Reader

1 0.672±0.05 0.727±0.05 0.118 0.806±0.05 0.837±0.04 0.339

2 0.687±0.05 0.760±0.05 0.012 0.730±0.05 0.782±0.05 0.092

3 0.807±0.04 0.807±0.04 1.000 0.848±0.04 0.882±0.04 0.113

Inexperienced group (1–3) 0.722±0.03 0.765±0.03 0.050 0.794±0.03 0.834±0.03 0.019

4 0.824±0.04 0.848±0.04 0.079 0.824±0.04 0.840±0.04 0.317

5 0.779±0.05 0.816±0.05 0.149 0.845±0.04 0.863±0.04 0.317

6 0.834±0.05 0.834±0.05 1.000 0.895±0.04 0.905±0.04 0.594

Experienced group (4–6) 0.812±0.03 0.833±0.03 0.039 0.858±0.02 0.866±0.02 0.458

All readers* 0.793 (0.672–0.834) 0.812 (0.706–0.848) 0.001 0.835 (0.730–0.895) 0.852 (0.782–0.905) 0.060

AI 0.781±0.03 0.892±0.02 0.026

US, ultrasonography; AUC, area under the receiver-operator characteristics curve; SE, standard error; Independent-D, independent diagnosis; Secondary-D, secondary diagno-
sis; AI, artificial intelligence.
*Data was shown as median (min-max).

Figure 2, a–f. Exemplary images of some cases that were wrongly classified by at least one classification task (a–d). US-mode images and SWE-mode 
images are a set of model-aligned images of the same lesion. In panels (e, f), correct  diagnoses were obtained from US-mode and SWE-mode images 
when analyzed separately; however, US and SWE images together yielded incorrect diagnoses. 
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ty and accuracy are significantly improved 
(p = 0.013 and p < 0.001) by integrating US-
mode and SWE-mode images of breast le-
sions. For reader 1, although the sensitivity 
was not improved by AI system, the speci-
ficity was greatly promoted from 64.1% to 
75.0% (p < 0.001) and from 79.7% to 85.9% 
(p < 0.001), respectively, under two modes. 
For reader 2, although the sensitivity was 
slightly decreased from 74.1% to 70.4% 
(p  <  0.001), the other parameters became 
statistically higher after using the AI system 
(p < 0.001 for all). For reader 3, the sensitiv-
ity and specificity of dual-mode benefitted 
from AI (p  =  0.001 and p  <  0.001). In the 
experienced radiologist group, the spec-
ificity of two different modes of reader 4 
and the specificity of dual-mode of reader 
6 increased significantly (p < 0.001, for all). 

The sensitivity of reader 5 for two modes 
(p < 0.001 and p < 0.001) and reader 6 for 
dual-mode (p  =  0.001) were all improved 
with the AI system. Regarding the accuracy, 
except reader 3 on US-mode and reader 5 
on dual-mode and reader 6 on two modes, 
the accuracy of secondary-diagnose mode 
was  significantly improved for all radiolo-
gists with the aid of AI system (p < 0.001, for 
all). Overall, we observed that the accuracy, 
sensitivity and specificity among the most 
of inexperienced and experienced radiolo-
gists were improved with our AI schema.

Table 4 shows a summary of the interob-
server variability among the six radiolo-
gists at independent-diagnosis mode and 
secondary-diagnosis mode. In all, the total 
interobserver agreements between inexpe-

rienced and experienced radiologists were 
improved from fair (κ=0.39) without AI to 
moderate (κ=0.53) with AI on US-mode 
(p  =  0.003). On dual-mode, agreement 
among inexperienced and experienced ra-
diologist groups without and with AI were all 
substantial. Moreover, the metric value of κ 
was significantly improved from 0.62 to 0.73 
with AI (p = 0.001). It also showed significant 
improvement in the agreement among the 
experienced radiologists on dual-mode: the 
agreement was substantial for both inde-
pendent-diagnosis mode and secondary-di-
agnosis mode (κ=0.65 and 0.74, p = 0.017).

Discussion
Many researches on US and SWE demon-

strated the great potential of AI in breast 

Table 3. Comparison of diagnostic performance on different reading modes (independent diagnosis vs. secondary diagnosis)

US-mode Dual-mode

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Reader 1 65.9 vs. 73.6 70.4 vs. 70.4 64.1 vs. 75.0 80.2 vs. 84.6 81.5 vs. 81.5 79.7 vs. 85.9

p <0.001 1.000 <0.001 <0.001 1.000 <0.001

Reader 2 72.5 vs. 81.3 59.3 vs. 63.0 78.1 vs. 89.1 72.5 vs. 81.3 74.1 vs. 70.4 71.9 vs. 85.9

p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Reader 3 75.8 vs. 75.8 92.6 vs. 92.6 68.7 vs. 68.7 84.6 vs. 87.9 85.2 vs. 88.9 84.4 vs. 87.5

p 1.000 1.000 1.000 <0.001 0.001 <0.001

Reader 4 81.3 vs. 84.6 85.2 vs. 85.2 79.7 vs. 84.4 81.3 vs. 83.5 85.2 vs. 85.2 79.7 vs. 82.8

p <0.001 1.000 <0.001 <0.001 1.000 <0.001

Reader 5 82.4 vs. 84.6 66.7 vs. 74.1 89.2 vs. 89.2 86.8 vs. 86.8 81.5 vs. 85.2 87.5 vs. 87.5

p <0.001 <0.001 1.000 1.000 <0.001 1.000

Reader 6 85.9 vs. 85.9 77.8 vs. 77.8 89.2 vs. 89.2 91.3 vs. 91.3 88.9 vs. 85.2 92.2 vs. 93.7  

p 1.000 1.000 1.000 1.000 0.001 <0.001

AI 85.9 59.3 96.9 92.4 81.5 96.9

US, ultrasonography; AI, artificial intelligence.

Table 4. Interobserver agreements of experienced and inexperienced radiologists using different diagnosis modes

Independent-D Secondary-D Improvement

κ (95% CI) p κ (95% CI) p κ (95% CI) p

US-mode

Inexperienced 0.50 (0.39–0.61) 0.003 0.53 (0.44–0.61) 0.001 0.03 (-0.16 to 0.22) 0.562

Experienced 0.62 (0.54–0.70) 0.001 0.65 (0.51–0.79) 0.003 0.03 (-0.03 to 0.09) 0.187

All readers 0.39 (0.29–0.50) <0.001 0.53 (0.47–0.59) <0.001 0.14 (0.06–0.22) 0.003

Dual-mode

Inexperienced 0.61 (0.42–0.81) 0.005 0.74 (0.70–0.77) <0.001 0.12 (-0.10 to 0.34) 0.141

Experienced 0.65 (0.46–0.83) 0.004 0.74 (0.60–0.88) 0.002 0.09 (0.04–0.14) 0.017

All readers 0.62 (0.54–0.70) <0.001 0.73 (0.68–0.79) <0.001 0.11 (0.06–0.16) 0.001

Independent-D, independent diagnosis; Secondary-D, secondary diagnosis; 95% CI, 95% confidence interval; US, ultrasonography.



ultrasound image analysis. Consistent with 
previous studies (14, 24), our results showed 
that the dual-mode utilization of our AI 
system was more helpful in differentiating 
breast lesions with AUC of 0.892 compared 
with US-mode with AUC of 0.781. Moreover, 
the AUC of our AI schema was comparable 
to our radiologists regardless of the expe-
rience level on US-mode. On dual-mode, 
the AUC of AI system was higher than the 
inexperienced radiologists group and no 
different from the experienced radiologists 
group. Practically, this manifests the great 
application potential of our AI architecture. 

Choi et al. (25) found that with the appli-
cation of CAD in B-mode breast ultrasound 
interpretation, the specificity was signifi-
cantly improved (76.6% to 80.3%) without 
a change in the sensitivity (91.7%) for the 
experienced readers while both sensitivity 
and specificity were improved for the in-
experienced readers (75.0% to 83.3% and 
71.8% to 77.1%), which is in accordance 
with our study. As shown in Table 2, we 
observed that the accuracy, sensitivity and 
specificity among the less experienced and 
experienced radiologists were all improved 
with our AI schema. The most notable con-
trast was shown on reader 6 with excellent 
independent diagnostic performance and 
reader 2 at secondary-diagnosis mode with 
the help of AI system.

As for the results shown in Table 3, with 
the aid of AI system, the mean AUCs of all 
radiologists increased on US-mode breast 
ultrasound which is not in line with previous 
studies. This might be due to superiority of 
the AI system used. Lee et al. (26) reported 
that the diagnostic performance of the in-
experienced group after combination with 
the CAD result was significantly improved, 
whereas that of the experienced group did 
not change after combination with the CAD 
result on breast ultrasound. Although the 
experienced radiologists showed no supe-
riority to AI system on US-mode (0.812 vs. 
0.781), with the excellent ability of exca-
vating information, they achieved a statis-
tically significantly higher AUC of 0.833 at 
the secondary-diagnosis mode. In terms of  
dual-mode, AI system explored much more 
fruitful information and achieved a compa-
rable AUC to the experts (0.892 vs. 0.858), 
but it showed no substantial improvement 
for the experts. As we mentioned above, 
although experts are more likely to reach 
a higher diagnosis level based on sufficient 
information from dual-mode images, it 

is also clear that there is a limit to human 
ability. Whereas, with the help of the AI sys-
tem, the mean AUC of dual-mode of the 
inexperienced readers was increased sig-
nificantly (0.794 vs. 0.834) and was compa-
rable to the experts (0.834 vs. 0.866), which 
was not observed on US-mode (0.765 vs. 
0.833). This may also reflect the fact that, 
with multi-mode data, AI can extract more 
useful diagnostic information to assist less 
experienced doctors. As a whole, our AI 
system is more useful for the inexperienced 
readers which was also suggested by many 
studies (23, 25–27). More importantly, our 
observational study was the first to explore 
the role of AI in assisting the diagnosis of 
dual-mode breast ultrasound images.

Lee et al. (28) found that when SWE was 
added to B-mode breast US, better interob-
server agreement was obtained. Park et al. 
(27) concluded that interobserver variabili-
ty of breast lesion US assessment was sig-
nificantly improved after CAD combination 
regardless of the radiologist’s experience. 
In our experimental study, the interob-
server variability was reduced by using AI 
for all the radiologists on US-mode and 
dual-mode. Moreover, the interobserver 
agreement was improved among the ex-
perienced radiologists on dual-mode. With 
regard to the inexperienced radiologists, 
the interobserver agreement was not sig-
nificantly changed with AI assistance on 
US-mode or dual-mode. The possible ex-
planation could be that some less experi-
enced doctors with insufficient diagnostic 
capacity and low diagnostic confidence 
may not handle external disturbance (AI) 
appropriately. On the contrary, the experi-
enced readers could accurately extract the 
additional information inspired by AI in 
addition to the limited information which 
they acquired visually. The final result was 
that the experienced radiologists drew near 
to the real results more consistently, while 
diagnostic variation among the inexperi-
enced has increased. Therefore, the ideal 
objective of the current AI technique is to 
serve the inexperienced doctors better and 
could be on a par with the experts, which 
requires technological development and 
the gradual adaptation of the radiologists.

US and SWE images used in our study 
were all standard sections; there were prob-
lems regarding the reproducibility of the 
CAD results when examinations were per-
formed by less-experienced operators. In 
daily potential use, the diagnostic decision 

should be made by experienced radiologist. 
From our results, this dual-mode AI system 
is on par with the experienced radiologist, 
therefore, could be used as a reference for 
clinical application, especially for inexperi-
enced radiologist. In further investigations, 
cine loops rather than still images could be 
used for study which might reduce opera-
tor dependency. Second, a prospective re-
search should be made in clinical practice; 
radiologists with different qualifications are 
required to collect pictures and input them 
into our AI system for a reproducibility and 
repeatability study. Third, in terms of model 
training, hard example mining and human-
in-the-loop means could be utilized to fur-
ther improve the final performance of our 
AI model by retraining the model to correct 
the misdiagnosed cases determined by the 
original model.

Our study has several limitations. First, as 
a retrospective study, there could be bias 
caused by repeated reading of the same 
dataset from radiologists. Second, as an in-
ternal information of our hospital, the pos-
sibility that the breast images have been 
seen by the readers cannot be excluded. 
Third, our AI modal was not trained and 
validated with external dataset from other 
hospitals. Making our AI model more robust 
with larger scale sample dataset and multi-
center dataset in a prospective clinical trial 
is also our research direction.

In conclusion, our observational study 
demonstrated that AI showed radiolo-
gist-level performance in diagnosing both 
breast US and SWE images. In terms of di-
agnostic performance improvement, the in-
experienced radiologists benefit more from 
the aid of AI system. In clinical practice, our 
AI architecture would be valuable for im-
proving the overall diagnostic performance 
of breast dual-mode US images for all ra-
diologists at different levels of experience. 
Regarding interobserver agreement, the 
variation among the experienced radiol-
ogists decreased more distinctively when 
using AI.
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